

Week 11

Christmas tree animation
This is our last session before the Christmas break, so we’ll make a seasonal animation. A
penguin will fetch in a Christmas tree, decorate it, then turn on the flashing lights.

We’ll break this project down into stages. The penguin has to:

● Carry in the tree;
● Put each light onto the tree;
● Make the lights twinkle.

Backdrop and tree
You can find a backdrop in the library (the one in the picture above is ‘​room3​’). For the tree,
you could use ‘​Tree2​’ from the library, or find one on the web. Make the tree the right size to
fit in the room.

Penguin
I chose ‘​Penguin2 Talk​’ from the library. You don’t have to use a penguin of course!

To make the penguin face in the direction it’s going, go to its info and choose the ‘flip

left/right’ rotation style: — make sure the arrow is
chosen.

ben@redfrontdoor.org ​ ​https://bennorth.github.io/scratch-worksheets-2017-2018/​ Copyright and licensing: last page

https://bennorth.github.io/scratch-worksheets-2017-2018/

Carry in the tree
The animation starts with the penguin carrying the tree in from the right of the stage. The
two sprites need to move together. The movement is fairly simple, so we’ll be able to make
sure their scripts line up time-wise. We’ll trigger the animation with a broadcast.

Penguin
It starts off at the right-hand edge of the stage,
faces left, then marches towards the left of the
stage. Once it gets there, it leaves time to put the
tree down, then steps back a bit.

Add the script at the right​ to the penguin​:
We’ll use a green-flag script in the stage to set everything
going.

Add this script​ to the stage​:

Test it!
Click green flag and check the penguin walks across the stage. Adjust the numbers in the
script until it looks right for your penguin and room.

Tree
The tree will do something very similar, to make it look like the penguin is

carrying it. It will be carried at an angle, and then
put itself down the right way up.

We’re being a bit lazy here, and just copying the first ‘​repeat​’
block from the penguin to get the movement to match up.

The half-second wait should make everything happen at the
right time.

The ‘​go back​’ makes sure the penguin isn’t hidden behind the
tree once the tree has been put down.

You can adjust the carrying angle until you like how it looks.

Test it!
Make sure that the penguin and the tree move OK when you click green flag.

Tree lights
We need a sprite for the light. We’ll use clones of this sprite to be the individual
lights on the tree. I used ‘​Ball​’, which has a few differently-coloured costumes.

Add a sprite to be the lights​.
The ‘original’ sprite will never be seen, only its clones.

So ​add this script​ to the light​:

Put a light on the tree
We’ll pretend the penguin takes each light out of its pocket. So the clone needs to appear
where the penguin is, then glide to the right spot on the tree.

To tell the clone where ‘the right spot’ is, we’ll use two variables.

Create two ‘for all sprites’ variables​: ​light x​ and ​light y​. They will be the coordinates
of the spot where we want the light to end up on the tree. We’ll worry about how to set them
in a minute.

Make a new light appear
We need a new clone when a ‘next light’ message is received.

Add this script​ to the light​:

Make the new light go onto the tree
Each light clone which appears needs to go to
the penguin, then glide to the tree.

We’ll choose a random costume for each light.
Each costume is a different colour.

Later, to make the light flash on and off, we’ll use
Scratch’s ​brightness​ effect​. When the light first
goes on the tree, it should be dark.

Add this script​ to the light​:

Test it!
To test this, ​add a little throw-away script​ like this to the stage​,
and double-click it.

Putting up lots of lights
The stage will tell each new light to go onto the tree. To keep our code organised, we’ll
make a custom block to put up one light.

Custom block with inputs
Lots of Scratch blocks have ‘holes’ which you fill in with details of
what you want to happen. We’ll a block to do the job of ‘put a light
on the tree’, and this needs details — where should the light go?

To create the custom block, ​select the stage​, and then click . Fill in ‘​put
light at x:​’ but don’t click OK yet! We need to add two
inputs​ for the ‘x’ and ‘y’ numbers saying where to put the light.

Click the little triangle to expand the ‘options’.

Then:

● Click and call the input you just created ‘​x​’

● Click and put in the text ‘​y:​’

● Click again, and call this input ‘​y​’

You should now have this ‘hat’ block to let you define
what you want to happen when you use your new
block. The inputs are like special variables which only
exist inside your custom block’s definition.

We need to:

● Set up the ‘light x’ and ‘light y’ variables using the inputs to the block;
● Send a message to tell the light to clone itself and put that clone on the tree;
● Wait until the clone is on the tree.

To put this together as a script, ​add blocks​ under the
‘define’ hat block to get​:
To get the purple ‘x’ and ‘y’ into the two ‘set’ blocks,
drag them from the hat block.

(There are better ways of making sure the light’s clone
has finished its work than ‘​wait 1.5s​’, but we’ll keep it
simple for now!)

Test it!
Make a one-block throw-away script for the stage, and double-click it, to check this is
working.

Put all the lights on the tree
Now we can use our block to put lights in different places
on the tree.

Add blocks​ to the stage’s green-flag script​ to put lights
in places you choose. You will probably need different
numbers to the ones I’ve got here. One way to find the
numbers is to point the mouse pointer where you want
the light to go, and read the ‘x’ and ‘y’ numbers under the
bottom-right of the stage.

You can put more lights in by using the ‘put light at’ block
more times.

Turn on the lights!
After all that work, the lights should twinkle.
We’ll do this by switching the ‘brightness’ effect
back and forth between bright and dark, waiting
random times between each switch.

We don’t want whole numbers of seconds, so
we’ll use a bit of arithmetic to get sensible
waiting times.

Remember ‘​/​’ means ‘divide’.

Add this script​ to the ‘light’ sprite​:

And to make this be the last stage of the animation, ​add a block​ to the stage’s green-flag
script​:

Test it!
Green flag should make the whole animation work, ending with flashing lights on the tree.

Challenges
If you have time, either now or over the break, you could try:

● Make the lights fade brighter and dimmer instead of flashing.
● Put a star on top of the tree and make it spin round when the lights are turned on.
● Make the penguin put presents under the tree.
● Add other decorations.
● Make Santa and Rudolph fly overhead once the tree is lit up.

Key points
Break a problem down into stages, testing as you go along.

Use the ‘brightness’ effect to make each light flash.

Choose costumes randomly, by number.

Use variables to communicate numbers between sprites.

Make a custom block with inputs.

About this document
Main content is copyright 2017 Ben North, and is hereby licensed under a ​Creative
Commons Attribution-ShareAlike 4.0 International License​. This and other worksheets
available at ​https://bennorth.github.io/scratch-worksheets-2017-2018/​.

Images contain material copyright The Scratch Team, used under a ​Creative Commons
Attribution-ShareAlike 2.0 license​.

Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See
http://scratch.mit.edu​.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://bennorth.github.io/scratch-worksheets-2017-2018/
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
http://scratch.mit.edu/

