

Week 10

A new game: Archery
One of the class members had the idea for this game — you have to throw balls at a target,
and you get more points the nearer the middle of the target your ball lands. To choose how

hard to throw the ball, the player holds down the ‘space’ key. When
they let go of ‘space’, the ball is thrown. The longer they hold down
‘space’, the faster (and so further) the ball goes.

Draw the target
I used a set of four circles, one ‘on top of’ another. You could make
more or less than this, but too many will make the scripts more
complicated later. You can of course use any shape as long as it
has regions of different colours. Or you could find an image online.

Shrink or grow the sprite so it’s about ⅓ as high as the stage, and
put it near the top of the stage, centred left/right.

Ball
It’s easiest to just pick one from the library. If you have time at the end and want to draw
your own, you can. Adjust its size until it will fit in the bullseye of your target.

Scripts for the ball
For the rest of this worksheet, all scripts belong to the ball.

General idea of how the game will work
The player will get five shots. For each shot, the game will:

● Put the ball in its starting position at the bottom of the stage;
● Get the throwing speed from the player using the ‘hold down space’ idea;
● Throw the ball up the stage towards the target;
● Give the player some points, depending on where the ball landed.

Create a variable to track the speed
Just from this list of jobs, we know we will need a variable to track the ball’s speed.

Make a ‘for all sprites’ variable called ‘speed’.

While we’re working on the game, leave the ‘show on screen’ box ticked so we can check
things are behaving OK.

ben@redfrontdoor.org https://bennorth.github.io/scratch-worksheets-2017-2018/ Copyright and licensing: last page

https://bennorth.github.io/scratch-worksheets-2017-2018/

Throw the ball up the stage
We’ll need to adjust this a bit to get it to work sensibly, so we’ll set up scripts to make it easy
to test and play with.

Custom ‘throw at target’ block
As we’ve done before in our SpaceChem project, go to the ‘more blocks’ section, and click
‘Make a Block’ to create your own block with a good name. I called it ‘throw at target’.

We want the ball to go faster the bigger the ‘speed’ variable
number is. Also, the ball should slow down as it goes up the
screen. So ‘speed’ will go down a tiny bit after each step.
The throw is over when the speed is zero. But! The way
computers work with numbers, sometimes you don’t get
exactly zero, so we’ll play safe and stop when the speed
gets below zero.

Put this together: Add this definition for ‘throw at target’:

Throw ball by pressing ‘t’ (for ‘test’) key
We want to play with different speed changes, and different
starting speeds, so we’ll make a testing script to make this easy.

Add this script to the ball:

Test it!
Press ‘t’ and you should see the ball get thrown up the stage.

Adjust the ‘−160’ and ‘6’ in the test script, and the ‘−0.1’ in the ‘throw at target’ definition, until
you like how high the ball starts, the speed the ball moves, and how it slows down.

Work out which numbers for ‘speed’ make sense — how big does ‘speed’ have to be so the
ball just reaches the top of the stage?

Get speed from player
We want to let the player set the starting speed
of the ball. To keep our program easy to read,
make a new custom block ‘get speed from
player’. This block needs to: Wait for player to
press space; start ‘speed’ off at zero; increase
‘speed’ variable while player holds ‘space’
down; finish when player lets go of ‘space’.

Add this definition for our new block:
The very short ‘wait’ is so the speed doesn’t go
up so quickly that it’s impossible to control.

Use in our test script
We can update our test script: Instead of just using ‘6’ for the
speed, we can get the speed from the player using our new block.

It will be handy to have a pause between two stages so we can
check what ‘speed’ is.

Change the test script:

Test it!
Press ‘t’, then press and hold space. When you let go, the ball should get thrown up the
screen faster the longer you held ‘space’ down.

Stop player throwing ball too hard
Playing around, you’ll see you can hold ‘space’ down for a long enough time that the speed
of the ball is stupidly high. We want to stop the player throwing the ball ‘too hard’.
Experiment until you find what is the highest sensible speed. For my numbers it was ‘8’. We
want to change the ‘get speed from player’ block so it stops if the speed reaches that
number.

Change the ‘get speed from player’ definition: In the ‘repeat until’, instead of

use

This means ‘keep increasing the speed until either the speed has gone over 8, or the player
has let go of the ‘space’ key’.

Find what the player scored
In the game, there are two ideas of ‘score’ we need:

● What score did the player get with this ball?
● What is the player’s total score so far in the game?

Make two ‘for all sprites’ variables: ‘Score’ and ‘Score this ball’. Move their displays
around on the stage, so they’re not in the way.

Test what colour the ball landed on
To make the game harder, if the ball lands part on
one colour and part on another, you get the lower
score of the two. So we test the lowest-scoring
colour first. The idea is to ask:

● Is the ball touching the background? If so,
the player gets no points. Otherwise:

● Is the ball touching the outside ring of the
target? If so, the player gets 5 points.
Otherwise: … etc.

● For the bullseye, once we’ve checked all
other possibilities, this must be what the
player hit.

This is a bit fiddly, but you’ll end up with
something like this:

Add a custom block ‘check what hit’ with this
definition:
All the colours in the tests here need to be the
ones in your background and target. Choose
some scores you think are fair.

Now we will use this custom block, which needs to happen after the ball has been thrown up
the screen at the target.

Add a block to the end of your test script:

Test it!
You should see the ‘Score this ball’ variable measure the right
score for where the ball lands.

Add on this ball’s score to total score
Once we know how many points the player got from this
ball, we add those points onto the player’s total score for
the game so far.

Add these blocks to the end of the ‘check what hit’
definition:
(We also show/hide the ‘score this ball’ variable to show
the player their score for the ball.)

Make ‘do one shot’ custom block
Your ‘test’ script is now doing exactly what one shot of the game is.

Make a new custom block ‘do one shot’, and use your test script as
its definition:

(You can throw away the ‘when ‘t’ key pressed’ hat block.)

One game is five shots
The only thing left is to make the game give the player five shots at the
target. To keep track of how many shots the player has left, we will need another variable.

Make a ‘for all sprites’ variable called ‘shots left’. Adjust where
it is shown on the stage.

To put the last bit of the game together: At the start of the game,
we need to set the score to zero, and the number of shots left to
five. Then we just ‘do one shot’ five times, pausing between
each one.

Add this ‘green flag’ script:

Try it!
The game should be finished. See how well you can score!

Challenges
Make the target move up or down a random amount just before each shot.

Make the target glide left and right.

If the ball touches two colours, give the player the higher score.

Add a ‘speed meter’ which shows how hard the player will throw the ball, but not in a way
which makes it too easy to tell where the ball will land.

Key points
Realistic movement with slowing down.

Breaking problem down into small pieces with sensible names.

Making each piece one at a time and testing as you go along.

Sequence of tests in the right order to make the game harder.

About this document
Main content is copyright 2017 Ben North, and is hereby licensed under a Creative
Commons Attribution-ShareAlike 4.0 International License. This and other worksheets
available at https://bennorth.github.io/scratch-worksheets-2017-2018/.

Images contain material copyright The Scratch Team, used under a Creative Commons
Attribution-ShareAlike 2.0 license.

Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See
http://scratch.mit.edu.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://bennorth.github.io/scratch-worksheets-2017-2018/
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
http://scratch.mit.edu/

