
 

Week 3 
Last week we made a grid of cells which our SpaceChem-like robot will work in.  This time 
we’ll work out how to make it so the player can put the ‘direction instruction’ arrows onto the 
grid. 

This worksheet will use the Scratch project from the end of Week 2, but you should be able 
to use your own project if you prefer. 

Start with the ‘right arrow’ 
We’ll start with one of the direction arrows, and then it will be easy to use the same ideas for 
the other direction. 

It’s quickest to start with an arrow sprite from the library.  If 
there’s time at the end, you can draw your own arrow 
instead.  Use the leftmost ‘New sprite’ button, and choose 
something.  I used ‘Arrow1’. 

Click green flag to draw your grid, and then shrink your arrow using the  tool until it fits 
nicely into a cell. 

Let the player drag the arrow 
We will write a short script which makes the sprite follow the 
mouse until the player lets go of the mouse button.  The ‘drag’ 
should start when the player clicks on the arrow, so we’ll start the 
script with the ‘when this sprite clicked’ hat-block. 

Then, until the player lets go of the mouse button, we want the 
arrow to go to where the mouse is.  This is what the ‘repeat until’ 
control block is for. 

Add this script to the arrow sprite: 
You’ll see we haven’t filled in the ‘question’ part of the ‘repeat 
until’ yet.  We want to keep going to the mouse pointer until the 
mouse button is ‘up’.  Scratch doesn’t directly have a way of asking whether the mouse 

button is ‘up’, only whether it’s ‘down’: . 

Another way of asking ‘is the button up?’ is to ask ‘is the 
button not down?’, so this is what we have to do: 

. 

Use this block to fill in the script: 
 

ben@redfrontdoor.org      https://bennorth.github.io/scratch-worksheets-2017-2018/      Copyright and licensing: last page 
 

https://scratch.mit.edu/projects/199126751/
https://bennorth.github.io/scratch-worksheets-2017-2018/


Test it! 
Now if you go to full-screen mode, using the button under the Scratch logo at 
top-left, you should be able to drag the arrow around with the mouse. 

Dragging new arrows 
But the player needs to be able to put more than one arrow on the grid to program their 
robot.  We’ll use clones for this.  We’ll have the original arrow off to the side: 

 

and let the player drag clones of it onto the grid. 

Whenever the original arrow is clicked, we’ll make a clone, and that clone will be what 
follows the mouse pointer until the mouse button is up.  So change the ‘when this sprite 
clicked’ script, and add a ‘when I start as a clone’ script: 

 

Test it! 
If you try this, you should be able to drag lots of arrows off the original one and onto the grid. 

Clones should be in front 
A small improvement: The clone appears ‘behind’ the original, which looks a 
bit odd.  Put a  block just under the ‘when I start as a clone’ to fix this. 

 



Moving the clones around on the grid 
If you play with this, you’ll notice another problem: If you put an arrow on the grid, and then 
try to move that arrow to a different grid cell, you get another arrow!  We don’t want this to 
happen.  If you drag a clone, it should just move that clone, not make another one. 

We need each arrow to know whether it’s the original, or a clone.  This is the same problem 
as we had when each grid-cell had to know which row and column it was in, and we’ll use 
the same solution. 

Make a variable so each arrow can remember 
whether it’s the original or a clone: 

(Make sure you choose ‘For this sprite only’.) 

We need the original to have “no” for this 
variable, and the clones to have “yes”, so add blocks to make this happen. 

Add a ‘when green-flag clicked’ script, and change the ‘when I start as a clone’ script: 

 

(You should still have your ‘when this sprite clicked’ script.) 

And then, when an arrow is clicked, we need to do two different things depending on 
whether it is the original or a clone that’s been clicked: 

● If it’s the original, then create a new clone. 
● Else it’s a clone, so let the player drag that 

clone around. 

We’ll use the ‘if / then / else’ block for this. 

Change the ‘when this sprite clicked’ script to the 
one at the right: 

(Your ‘when I start as a clone’ script stays the same.) 
You can duplicate the required blocks from ‘when I 
start as a clone’ to save time. 

Test it! 
This should now be working — you should be able to drag new arrows onto the grid, and 
move arrows which are already on the grid.  Go to full-screen and check it is working! 

 



Making our own Scratch block for ‘drag and drop’ 
As your programs get more complicated, one good way to keep them understandable is to 
give names to parts of your scripts.  You can see that we’ve used ‘go to front; repeat until not 
mouse down; go to mouse-pointer’ twice.  We’ll give a name to this set of blocks. 

It’s worth trying to think of a good name.  This stack of blocks lets us drag the arrow around 
(by moving the mouse) and then drop it onto the grid (by letting go of the mouse button).  So 
I’m going to call it ‘drag and drop’. 

To make your own block, use the  section, bottom-right, and click 

.  Type ‘drag and drop’ into 
the purple block in the window which pops 
up: 

Click ‘OK’. 

Scratch will put a big purple hat-block into 
your scripts section, and a ‘drag and drop’ 
purple block into the ‘More Blocks’ palette: 

  

The hat-block lets you ‘define’ what you mean by ‘drag and drop’, by connecting blocks 
underneath it.  Then when you use your new ‘drag and drop’ block, Scratch will use the 
blocks in the definition.  This is probably easier to understand once you see it working: 

Add blocks to finish the ‘define drag and drop’ script, and change your ‘when this 
sprite clicked’ and ‘when I start as a clone’ scripts: 

 

Your program is now much easier to read and work with. 

Test it! 
Check your game still works! 

 



Make arrow ‘snap’ to centre of cell 
This is working quite well, but the player can drop an arrow anywhere on 
the grid, including across two or more cells.  It will be very difficult to make 
sure the robot follows the correct arrows if it’s not clear which cell the 
arrows are on.  We want the arrows to always be in the centre of a cell. 
We’ll add some extra blocks to our ‘drag and drop’ definition to fix this. 

This will involve quite a bit of maths, so don’t worry too much if you don’t understand every 
detail of it.  If you get the general idea, and are able to make it work in your project by 
copying the scripts in this sheet, then that’s fine. 

Think about a simpler problem first 
We’ll work out what to do by thinking of a simpler problem.  Suppose we wanted to let 
somebody put a coin on a ruler, but only at the marks 0cm, 10cm, 20cm, 30cm, etc.  If they 
put it on 32cm, we’ll move it to the closest allowed place, 30cm.  How can we work out 
where to move the coin to once they’ve put it down? 

We want to ‘round to nearest 10cm’.  Scratch does have a  block, but it rounds to 
the nearest whole number.  We can work out ‘how many steps of 10cm along the ruler’ the 
person has put their coin by dividing: 

(number of 10cm steps) = (place on ruler) ÷ 10cm. 

If they put the coin on 42cm, this will work out to 4·2 steps, which we can then  to 
4 steps, and multiply back by the 10cm to get 40cm. 

Work out ‘x’ coordinate of nearest cell centre 
Our grid is like this, but the steps aren’t 10cm.  In my project, one ‘cell step’ is 40 Scratch 

units.  Yours might be different.  It’s the number in the  formula the cell sprite 
uses. 

Also, our ‘ruler’ doesn’t start at zero, because we had to move the cells left and down to 
make the grid fit.  So we need to undo the subtraction 
before dividing.  ‘Undoing subtracting’ is ‘adding’, so to 
find out which cell the arrow is nearest to, we can start 
with the ‘x’ value the sprite is at, and calculate: 

(The slash ‘/’ is used for ‘divide’ in Scratch and many other computer languages.) 

There are more calculations to do, so to stop this getting too complicated we’ll make a 
variable to give a name to what we’ve done so far. 

Make a ‘for this sprite’ variable 
‘nearest-cell-x’: 
We’ll set this variable to the calculation we’ve 
just worked out. 

 



 

Make this block, ready for use in 
a script later: 
And then to turn this back into a Scratch-style ‘x’ number, we do the same ‘multiply by 40 
and subtract 100’ as we used for the cells. 

Make this block, ready for use in a script later: 
(Remember the star ‘*’ is ‘multiply’.) 

Be very careful you get the right green blocks inside each other! 

Work out ‘y’ of nearest cell centre 
In the same way, we can work out what ‘y’ number we need to nudge the arrow to for it to be 
in the centre of a cell vertically.  It’s very similar, except you might need a different number 
instead of the ‘100’, depending what you used for your cells.  For my project, I needed ‘120’. 

Make a ‘nearest-cell-y’ variable, and then make these two blocks, ready for use later: 

      

Nudge the arrow to its nearest cell’s centre 
Now put this all together! 

Add three blocks to the bottom of our definition of ‘drag and drop’, to make it: 

 

You’ve already made the ‘set nearest-cell-x’ and ‘set nearest-cell-y’ blocks, and the green 
round-ended blocks for the ‘glide’ block. 

Here I used a ‘glide’ of 0·1 seconds, but you could instead use ‘go to’ if you want the arrow 
to go immediately to its cell centre. 

This is another good reason to have made our own ‘drag and drop’ block — we only have to 
have one copy of this very complicated script in our sprite. 

 



Arrows in other directions 
You can now duplicate the arrow sprite, and choose a different costume for each one, to get 
all four direction arrows.  (The library ‘Arrow 1’ sprite already has all four costumes.) 

Give the sprites sensible names! 

Challenge: Dropping an arrow outside the grid deletes it 
At the moment, the player can drop the arrow outside the grid.  Can you make it so that if the 

player does this, then that arrow disappears?  You will need the  block. 

Key points 
Use ‘repeat until’ to keep doing something until a questions gets the answer “yes”. 

Use the ‘not’ operator block to turn “no” into “yes” and vice versa. 

Make clones behave differently to the original sprite, with if/then/else. 

Create a custom block to make our program easier to understand and work with. 

Use the ‘round’ block, with other arithmetic blocks, to find the nearest cell. 

 

Extra information (not part of our project) 

For other projects 
Don’t do this for our arrow, but sometimes you can use a simpler way of 
letting the player drag a sprite round the stage.  There is a ‘can drag in 
player’ tick-box, which you can work with using the blue circled ‘i’ of a sprite: 

Click here on the blue ‘i’ to get to: 

  

Tick ‘can drag in player’, and then click the at top-left to go back. 

This won’t work for the clones we will need to work with shortly, which is why we wrote our 
own scripts. 

  

 



About this document 
Main content is copyright 2017 Ben North, and is hereby licensed under a Creative 
Commons Attribution-ShareAlike 4.0 International License.  This and other worksheets 
available at https://bennorth.github.io/scratch-worksheets-2017-2018/. 

Images contain material copyright The Scratch Team, used under a Creative Commons 
Attribution-ShareAlike 2.0 license. 

Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab.  See 
http://scratch.mit.edu. 

 

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://bennorth.github.io/scratch-worksheets-2017-2018/
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
http://scratch.mit.edu/

